Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type

Concha, PK; Penafiel, DM; Rodriguez, EK; Salgado, P.

Abstract

Recently it was shown that standard odd- and even-dimensional general relativity can be obtained from a -dimensional Chern-Simons Lagrangian invariant under the algebra and from a -dimensional Born-Infeld Lagrangian invariant under a subalgebra , respectively. Very recently, it was shown that the generalized Inonu-Wigner contraction of the generalized AdS-Maxwell algebras provides Maxwell algebras of types which correspond to the so-called Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional general relativity may emerge as the weak coupling constant limit of a -dimensional Chern-Simons Lagrangian invariant under the Maxwell algebra type , if and only if . Similarly, we show that standard even-dimensional general relativity emerges as the weak coupling constant limit of a -dimensional Born-Infeld type Lagrangian invariant under a subalgebra of the Maxwell algebra type, if and only if . It is shown that when this is not possible for a -dimensional Chern-Simons Lagrangian invariant under the and for a -dimensional Born-Infeld type Lagrangian invariant under the algebra.

Más información

Título según WOS: Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type
Título según SCOPUS: Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type
Título de la Revista: EUROPEAN PHYSICAL JOURNAL C
Volumen: 74
Número: 2
Editorial: Springer
Fecha de publicación: 2014
Página de inicio: 1
Página final: 16
Idioma: English
URL: http://link.springer.com/10.1140/epjc/s10052-014-2741-6
DOI:

10.1140/epjc/s10052-014-2741-6

Notas: ISI, SCOPUS