ON THE CONNECTIVITY OF THE BRANCH LOCUS OF THE SCHOTTKY SPACE

Hidalgo, Ruben A.; Izquierdo, Milagros

Abstract

Let M be a handlebody of genus g >= 2. The space T(M), that parametrizes marked Kleinian structures on M up to isomorphisms, can be identified with the space MSg, of marked Schottky groups of rank g, so it carries a structure of complex manifold of finite dimension 3(g - 1). The space M(M) parametrizing Kleinian structures on M up to isomorphisms, can be identified with S-g, the Schottky space of rank g, and it carries the structure of a complex orbifold. In these identifications, the projection map pi: T(M) -> M(M) corresponds to the map from MSg, onto S-g that forgets the marking. In this paper we observe that the singular locus B(M) of M(M), that is, the branch locus of pi, has (i) exactly two connected components for g = 2, (ii) at most two connected components for g >= 4 even, and (iii) M(M) is connected for g >= 3 odd.

Más información

Título según WOS: ON THE CONNECTIVITY OF THE BRANCH LOCUS OF THE SCHOTTKY SPACE
Título según SCOPUS: On the connectivity of the branch locus of the schottky space
Título de la Revista: ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA
Volumen: 39
Número: 2
Editorial: SUOMALAINEN TIEDEAKATEMIA
Fecha de publicación: 2014
Página de inicio: 635
Página final: 654
Idioma: English
URL: http://www.acadsci.fi/mathematica/Vol39/vol39pp635-654.pdf
DOI:

10.5186/aasfm.2014.3942

Notas: ISI, SCOPUS