Integrability of difference Calogero-Moser systems
Keywords: Ruijsenaars-Schneider systems
Abstract
A general class of n-particle difference Calogero-Moser systems with elliptic potentials is introduced. Besides the step size and two periods, the Hamiltonian depends on nine coupling constants. We prove the quantum integrability of the model for n = 2 and present partial results for n≥ 3. In degenerate cases (rational, hyperbolic, or trigonometric limit), the integrability follows for arbitrary particle number from previous work connected with the multivariable q-polynomials of Koornwinder and Macdonald. Liouville integrability of the corresponding classical systems follows as a corollary. Limit transitions lead to various well-known models such as the nonrelativistic Calogero-Moser systems associated with classical root systems and the relativistic Calogero-Moser system.
Más información
Título de la Revista: | JOURNAL OF MATHEMATICAL PHYSICS |
Volumen: | 35 |
Número: | 6 |
Editorial: | AIP Publishing |
Fecha de publicación: | 1994 |
Página de inicio: | 2983 |
Página final: | 3004 |
Idioma: | English |
URL: | http://scitation.aip.org/content/aip/journal/jmp/35/6/10.1063/1.530498 |
DOI: |
10.1063/1.530498 |
Notas: | SCOPUS |