Integrability of difference Calogero-Moser systems

van Diejen, JF

Keywords: Ruijsenaars-Schneider systems

Abstract

A general class of n-particle difference Calogero-Moser systems with elliptic potentials is introduced. Besides the step size and two periods, the Hamiltonian depends on nine coupling constants. We prove the quantum integrability of the model for n = 2 and present partial results for n≥ 3. In degenerate cases (rational, hyperbolic, or trigonometric limit), the integrability follows for arbitrary particle number from previous work connected with the multivariable q-polynomials of Koornwinder and Macdonald. Liouville integrability of the corresponding classical systems follows as a corollary. Limit transitions lead to various well-known models such as the nonrelativistic Calogero-Moser systems associated with classical root systems and the relativistic Calogero-Moser system.

Más información

Título de la Revista: JOURNAL OF MATHEMATICAL PHYSICS
Volumen: 35
Número: 6
Editorial: AIP Publishing
Fecha de publicación: 1994
Página de inicio: 2983
Página final: 3004
Idioma: English
URL: http://scitation.aip.org/content/aip/journal/jmp/35/6/10.1063/1.530498
DOI:

10.1063/1.530498

Notas: SCOPUS