Analytical solutions for a nonlinear reaction-diffusion equation

Simos, Theodore; Psihoyios, George; Tsitouras, Ch.

Keywords: partial differential equations, Analytical and numerical techniques

Abstract

Exact analytical solutions are proposed for a family of evolution equations with nonlinear diffusion, Velhurst growth and global regulation. A power law solution is found. Solutions of diffusion type stem from a method based on a power law ansatz used to write ordinary differential equations that are easily solved, allowing to construct its exact solution. The equations admit an interpretation in terms of population dynamics and are related to the so-called conserved Fisher equation.

Más información

Fecha de publicación: 2013
Año de Inicio/Término: 21-27 September 2013
Página final: 4
URL: http://dx.doi.org/10.1063/1.4825867