On the rate of convergence of Krasnosel'skiA-Mann iterations and their connection with sums of Bernoullis
Abstract
In this paper we establish an estimate for the rate of convergence of the Krasnosel'skiA-Mann iteration for computing fixed points of non-expansive maps. Our main result settles the Baillon-Bruck conjecture [3] on the asymptotic regularity of this iteration. The proof proceeds by establishing a connection between these iterates and a stochastic process involving sums of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype inequality to majorize the expected value of a convex function of these sums using Poisson distributions.
Más información
Título según WOS: | On the rate of convergence of Krasnosel'skiA-Mann iterations and their connection with sums of Bernoullis |
Título según SCOPUS: | On the rate of convergence of Krasnosel'ski?-Mann iterations and their connection with sums of Bernoullis |
Título de la Revista: | ISRAEL JOURNAL OF MATHEMATICS |
Volumen: | 199 |
Número: | 2 |
Editorial: | HEBREW UNIV MAGNES PRESS |
Fecha de publicación: | 2014 |
Página de inicio: | 757 |
Página final: | 772 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s11856-013-0045-4 |
DOI: |
10.1007/s11856-013-0045-4 |
Notas: | ISI, SCOPUS - ISI |