On the rate of convergence of Krasnosel'skiA-Mann iterations and their connection with sums of Bernoullis

Cominetti, Roberto; Soto, José A.; Vaisman, José

Abstract

In this paper we establish an estimate for the rate of convergence of the Krasnosel'skiA-Mann iteration for computing fixed points of non-expansive maps. Our main result settles the Baillon-Bruck conjecture [3] on the asymptotic regularity of this iteration. The proof proceeds by establishing a connection between these iterates and a stochastic process involving sums of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype inequality to majorize the expected value of a convex function of these sums using Poisson distributions.

Más información

Título según WOS: On the rate of convergence of Krasnosel'skiA-Mann iterations and their connection with sums of Bernoullis
Título según SCOPUS: On the rate of convergence of Krasnosel'ski?-Mann iterations and their connection with sums of Bernoullis
Título de la Revista: ISRAEL JOURNAL OF MATHEMATICS
Volumen: 199
Número: 2
Editorial: HEBREW UNIV MAGNES PRESS
Fecha de publicación: 2014
Página de inicio: 757
Página final: 772
Idioma: English
URL: http://link.springer.com/10.1007/s11856-013-0045-4
DOI:

10.1007/s11856-013-0045-4

Notas: ISI, SCOPUS - ISI