Sharp regularity for certain nilpotent group actions on the interval
Abstract
According to the classical Plante-Thurston Theorem, all nilpotent groups of C-2-diffeomorphisms of the closed interval are Abelian. Using techniques coming from the works of Denjoy and Pixton, Farb and Franks constructed a faithful action by C-1-diffeomorphisms of [0, 1] for every finitely-generated, torsion-free, non-Abelian nilpotent group. In this work, we give a version of this construction that is sharp in what concerns the Holder regularity of the derivatives. Half of the proof relies on results on random paths on Heisenberg-like groups that are interesting by themselves.
Más información
Título según WOS: | Sharp regularity for certain nilpotent group actions on the interval |
Título según SCOPUS: | Sharp regularity for certain nilpotent group actions on the interval |
Título de la Revista: | MATHEMATISCHE ANNALEN |
Volumen: | 359 |
Número: | 1-2 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2014 |
Página de inicio: | 101 |
Página final: | 152 |
Idioma: | English |
DOI: |
10.1007/s00208-013-0995-1 |
Notas: | ISI, SCOPUS - http://download.springer.com/static/pdf/381/art%253A10.1007%252Fs00208-013-0995-1.pdf?auth66=1412539930_0cc3590fd2146d38e0424d69b2d0f31c&ext=.pdf |