Defective glucose transport across brain tissue barriers: A Stromal cell oxidation: a mechanism by which tumors obtain vitamin C neurological syndrome

Agus D, Vera JC, Golde DW

Abstract

Human tumors may contain high concentrations of ascorbic acid, but little is known about how they acquire the vitamin. Certain specialized cells can transport ascorbic acid directly through a sodium ascorbate cotransporter, but in most cells, vitamin C enters through the facilitative glucose transporters (GLUTs) in the form of dehydroascorbic acid, which is then reduced intracellularly and retained as ascorbic acid. Mice with established hematopoietic and epithelial cell xenografts were studied for the accumulation of injected ascorbic acid and dehydroascorbic acid. Most hematopoietic and epithelial tumor cell lines can only transport vitamin C in the oxidized form (dehydroascorbic acid) in vitro; however, when grown as xenografts in mice, they rapidly accumulated vitamin C after administration of radiolabeled ascorbic acid. The involvement of the GLUTs in vitamin C uptake by the xenografted tumors was demonstrated by competitive inhibition with D-glucose but not L-glucose. Because the malignant cells were not capable of directly transporting ascorbic acid, we reasoned that the ascorbic acid was oxidized to dehydroascorbic acid in the tumor microenvironment. Tumor accumulation of vitamin C in animals injected with ascorbic acid was inhibited by coadministration of superoxide dismutase, implying a role for superoxide anion in the oxidation of ascorbic acid. Whereas the epithelial cancer cell lines could not generate superoxide anion in culture, the minced xenograft tumors did. Our studies show the transport of dehydroascorbic acid by GLUTs is a means by which tumors acquire vitamin C and indicate the oxidation of ascorbic acid by superoxide anion produced by cells in the tumor stroma as a mechanism for generating the transportable form of the vitamin.

Más información

Título de la Revista: CANCER RESEARCH
Volumen: 59
Número: 18
Editorial: AMER ASSOC CANCER RESEARCH
Fecha de publicación: 1999
Página de inicio: 4555
Página final: 4558
Idioma: English
Notas: ISI