Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin
Abstract
In the renal collecting duct, vasopressin increases osmotic water permeability (P(f)) by triggering trafficking of aquaporin-2 vesicles to the apical plasma membrane. We investigated the role of vasopressin-induced intracellular Ca2+ mobilization in this process. In isolated inner medullary collecting ducts (IMCDs), vasopressin (0.1 nM) and 8-(4-chlorophenylthio)-cAMP (0.1 mM) elicited marked increases in [Ca2+](i) (fluo-4). Vasopressin-induced Ca2+ mobilization was completely blocked by preloading with the Ca2+ chelator BAPTA. In parallel experiments, BAPTA completely blocked the vasopressin-induced increase in P(f) without affecting adenosine 3',5'-cyclic monophosphate (cAMP) production. Previously, we demonstrated the lack of activation of the phosphoinositide-signaling pathway by vasopressin in IMCD, suggesting an inositol 1,4,5-trisphosphate-independent mechanism of Ca2+ release. Evidence for expression of the type 1 ryanodine receptor (RyR1) in IMCD was obtained by immunofluorescence, immunoblotting, and reverse transcription-polymerase chain reaction. Ryanodine (100 μM), a ryanodine receptor antagonist, blocked the arginine vasopressin-mediated increase in P(f) and blocked vasopressin-stimulated redistribution of aquaporin-2 to the plasma membrane domain in primary cultures of IMCD cells, as assessed by imrnunofluorescence immunocytochemistry. Calmodulin inhibitors (W7 and trifluoperazine) blocked the P(f) response to vasopressin and the vasopressin-stimulated redistribution of aquaporin-2. The results suggest that Ca2+ release from ryanodine-sensitive stores plays an essential role in vasopressin-mediated aquaporin-2 trafticking via a calmodulin-dependent mechanism.
Más información
Título de la Revista: | JOURNAL OF BIOLOGICAL CHEMISTRY |
Volumen: | 275 |
Número: | 47 |
Editorial: | AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC |
Fecha de publicación: | 2000 |
Página de inicio: | 36839 |
Página final: | 36846 |
Idioma: | english |
Notas: | SCOPUS |