Predictive Control for Low-Voltage Ride-Through Enhancement of Three-Level-Boost and NPC-Converter-Based PMSG Wind Turbine

Yaramasu, V.; Wu, B.; Alepuz S.; Kouro S.

Abstract

In this paper, a predictive control scheme is proposed for the low-voltage ride-through (LVRT) enhancement of direct-driven permanent-magnet-synchronous-generator-based megawatt-level wind turbines. The proposed method uses the turbine-generator rotor inertia to store the surplus energy during the grid voltage dips. The power conversion system is realized using a three-phase diode-bridge rectifier, a three-level-boost converter, and a neutral-point-clamped (NPC) inverter. The wind turbine requirements, such as maximum power point tracking, net dc-bus voltage control, balancing of the dc capacitor voltages, and reactive power generation, are modeled as the reference control variables. The generator-and grid-side cost functions are defined to deal with these control objectives. During each sampling interval, the control goals are achieved based on the minimization of cost functions. The coordination of boost and NPC converters and the exchange of reference control variables during normal and LVRT operation are formulated such that the power converters operate in a safe mode while meeting the grid code requirements. Simulation and experimental results are presented to validate the proposed strategy.

Más información

Título según WOS: Predictive Control for Low-Voltage Ride-Through Enhancement of Three-Level-Boost and NPC-Converter-Based PMSG Wind Turbine
Título según SCOPUS: Predictive control for low-voltage ride-through enhancement of three-level-boost and NPC-converter-based PMSG wind turbine
Título de la Revista: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volumen: 61
Número: 12
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2014
Página de inicio: 6832
Página final: 6843
Idioma: English
DOI:

10.1109/TIE.2014.2314060

Notas: ISI, SCOPUS