Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines
Abstract
Feature selection and classification of imbalanced data sets are two of the most interesting machine learning challenges, attracting a growing attention from both, industry and academia. Feature selection addresses the dimensionality reduction problem by determining a subset of available features to build a good model for classification or prediction, while the class-imbalance problem arises when the class distribution is too skewed. Both issues have been independently studied in the literature, and a plethora of methods to address high dimensionality as well as class-imbalance has been proposed. The aim of this work is to simultaneously explore both issues, proposing a family of methods that select those attributes that are relevant for the identification of the target class in binary classification. We propose a backward elimination approach based on successive holdout steps, whose contribution measure is based on a balanced loss function obtained on an independent subset. Our experiments are based on six highly imbalanced microarray data sets, comparing our methods with well-known feature selection techniques, and obtaining a better prediction with consistently fewer relevant features. (C) 2014 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines |
Título según SCOPUS: | Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines |
Título de la Revista: | INFORMATION SCIENCES |
Volumen: | 286 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2014 |
Página de inicio: | 228 |
Página final: | 246 |
Idioma: | English |
DOI: |
10.1016/j.ins.2014.07.015 |
Notas: | ISI, SCOPUS |