Vanishing viscosity for non-homogeneous asymmetric fluids in R-3: The L-2 case

Silva, PBE; Cruz, FW; Rojas-Medar, M

Abstract

We study the vanishing viscosity problem for the local-in-time solutions to the equations of non-homogeneous, viscous, incompressible asymmetric fluid in R-3 in the L-2 context. We prove that the fluid variables converge uniformly as the viscosities go to zero to a solution of a non-homogeneous, non-viscous, incompressible asymmetric fluid governed by an Euler-like system. This completes the previous work [5] where results for L-P, p > 3, where obtained. (C) 2014 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Vanishing viscosity for non-homogeneous asymmetric fluids in R-3: The L-2 case
Título según SCOPUS: Vanishing viscosity for non-homogeneous asymmetric fluids in R3: The L2 case
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 420
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2014
Página de inicio: 207
Página final: 221
Idioma: English
DOI:

10.1016/j.jmaa.2014.05.060

Notas: ISI, SCOPUS