Vanishing viscosity for non-homogeneous asymmetric fluids in R-3: The L-2 case
Abstract
We study the vanishing viscosity problem for the local-in-time solutions to the equations of non-homogeneous, viscous, incompressible asymmetric fluid in R-3 in the L-2 context. We prove that the fluid variables converge uniformly as the viscosities go to zero to a solution of a non-homogeneous, non-viscous, incompressible asymmetric fluid governed by an Euler-like system. This completes the previous work [5] where results for L-P, p > 3, where obtained. (C) 2014 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Vanishing viscosity for non-homogeneous asymmetric fluids in R-3: The L-2 case |
Título según SCOPUS: | Vanishing viscosity for non-homogeneous asymmetric fluids in R3: The L2 case |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 420 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2014 |
Página de inicio: | 207 |
Página final: | 221 |
Idioma: | English |
DOI: |
10.1016/j.jmaa.2014.05.060 |
Notas: | ISI, SCOPUS |