RADIAL SYMMETRY OF GROUND STATES FOR A REGIONAL FRACTIONAL NONLINEAR SCHRODINGER EQUATION
Abstract
The aim of this paper is to study radial symmetry properties for ground state solutions of elliptic equations involving a regional fractional Laplacian, namely (-Delta)(rho)(alpha)u + u = f(u) in R-n, for alpha is an element of (0, 1). (1) In [9], the authors proved that problem (1) has a ground state solution. In this work we prove that the ground state level is achieved by a radially symmetry solution. The proof is carried out by using variational methods jointly with rearrangement arguments.
Más información
Título según WOS: | RADIAL SYMMETRY OF GROUND STATES FOR A REGIONAL FRACTIONAL NONLINEAR SCHRODINGER EQUATION |
Título según SCOPUS: | Radial symmetry of ground states for A regional fractional nonlinear Schrödinger equation |
Título de la Revista: | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS |
Volumen: | 13 |
Número: | 6 |
Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
Fecha de publicación: | 2014 |
Página de inicio: | 2395 |
Página final: | 2406 |
Idioma: | English |
DOI: |
10.3934/cpaa.2014.13.2395 |
Notas: | ISI, SCOPUS |