RADIAL SYMMETRY OF GROUND STATES FOR A REGIONAL FRACTIONAL NONLINEAR SCHRODINGER EQUATION

Felmer P.; Torres C.

Abstract

The aim of this paper is to study radial symmetry properties for ground state solutions of elliptic equations involving a regional fractional Laplacian, namely (-Delta)(rho)(alpha)u + u = f(u) in R-n, for alpha is an element of (0, 1). (1) In [9], the authors proved that problem (1) has a ground state solution. In this work we prove that the ground state level is achieved by a radially symmetry solution. The proof is carried out by using variational methods jointly with rearrangement arguments.

Más información

Título según WOS: RADIAL SYMMETRY OF GROUND STATES FOR A REGIONAL FRACTIONAL NONLINEAR SCHRODINGER EQUATION
Título según SCOPUS: Radial symmetry of ground states for A regional fractional nonlinear Schrödinger equation
Título de la Revista: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
Volumen: 13
Número: 6
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2014
Página de inicio: 2395
Página final: 2406
Idioma: English
DOI:

10.3934/cpaa.2014.13.2395

Notas: ISI, SCOPUS