Generation of extended states in diluted transmission lines with distribution of inductances according to Galois sequences: Hamiltonian map approach
Abstract
We study the localization properties of diluted direct transmission lines, when we distribute two values of inductances L-A and L-B, according to the aperiodic Galois sequence. When we dilute the aperiodic Galois system with (d - 1) inductances with constant L-0 value, we find d sub-bands and (d - 1) gaps; here d is the period of the distribution of the Galois sequence in the diluted system. Under the condition L-0 approximate to (L-A, L-B), we find a set of extended states for finite N-d system size, which disappears when N-d ->infinity. For the case L-0 >> (L-A, L-B), using the scaling behavior of the averaged participation number < D(omega)> and the scaling behavior of the averaged normalized participation number
Más información
Título según WOS: | Generation of extended states in diluted transmission lines with distribution of inductances according to Galois sequences: Hamiltonian map approach |
Título según SCOPUS: | Generation of extended states in diluted transmission lines with distribution of inductances according to Galois sequences: Hamiltonian map approach |
Título de la Revista: | PHYSICA B-CONDENSED MATTER |
Volumen: | 452 |
Editorial: | Elsevier |
Fecha de publicación: | 2014 |
Página de inicio: | 74 |
Página final: | 81 |
Idioma: | English |
DOI: |
10.1016/j.physb.2014.07.009 |
Notas: | ISI, SCOPUS |