Sensitivity to evidence in Gaussian Bayesian networks using mutual information
Abstract
We introduce a methodology for sensitivity analysis of evidence variables in Gaussian Bayesian networks. Knowledge of the posterior probability distribution of the target variable in a Bayesian network, given a set of evidence, is desirable. However, this evidence is not always determined; in fact, additional information might be requested to improve the solution in terms of reducing uncertainty. In this study we develop a procedure, based on Shannon entropy and information theory measures, that allows us to prioritize information according to its utility in yielding a better result. Some examples illustrate the concepts and methods introduced. (C) 2014 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Sensitivity to evidence in Gaussian Bayesian networks using mutual information |
| Título según SCOPUS: | Sensitivity to evidence in Gaussian Bayesian networks using mutual information |
| Título de la Revista: | INFORMATION SCIENCES |
| Volumen: | 275 |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2014 |
| Página de inicio: | 115 |
| Página final: | 126 |
| Idioma: | English |
| DOI: |
10.1016/j.ins.2014.02.025 |
| Notas: | ISI, SCOPUS |