Topological conjugacy of real projective flows
Abstract
In this paper, we prove the following topological classification result for flows on real projective space induced by linear flows on Euclidean space: two flows on the projective space P(V) of a finite-dimensional real vector space V, induced by endomorphisms A and B of V, are topologically conjugate if and only if the Jordan structures of A and B coincide except for the real parts of the eigenvalues, whose values may differ but whose order and multiplicities must agree. Our proof is mainly based on ideas of Kuiper who considered the discrete-time analogue of this classification problem. We also correct a mistake in Kuiper's proof.
Más información
Título según WOS: | Topological conjugacy of real projective flows |
Título según SCOPUS: | Topological conjugacy of real projective flows |
Título de la Revista: | JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES |
Volumen: | 90 |
Número: | 1 |
Editorial: | Wiley |
Fecha de publicación: | 2014 |
Página de inicio: | 49 |
Página final: | 66 |
Idioma: | English |
DOI: |
10.1112/jlms/jdu020 |
Notas: | ISI, SCOPUS |