Topological conjugacy of real projective flows

Ayala V.; Kawan, C

Abstract

In this paper, we prove the following topological classification result for flows on real projective space induced by linear flows on Euclidean space: two flows on the projective space P(V) of a finite-dimensional real vector space V, induced by endomorphisms A and B of V, are topologically conjugate if and only if the Jordan structures of A and B coincide except for the real parts of the eigenvalues, whose values may differ but whose order and multiplicities must agree. Our proof is mainly based on ideas of Kuiper who considered the discrete-time analogue of this classification problem. We also correct a mistake in Kuiper's proof.

Más información

Título según WOS: Topological conjugacy of real projective flows
Título según SCOPUS: Topological conjugacy of real projective flows
Título de la Revista: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
Volumen: 90
Número: 1
Editorial: Wiley
Fecha de publicación: 2014
Página de inicio: 49
Página final: 66
Idioma: English
DOI:

10.1112/jlms/jdu020

Notas: ISI, SCOPUS