A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem
Abstract
We consider Liouville-type and partial regularity results for the nonlinear fourth-order problem Delta(2)u = vertical bar u vertical bar(p-1)u in R-n, where p > 1 and n >= 1. We give a complete classification of stable and finite Morse index solutions (whether positive or sign changing), in the full exponent range. We also compute an upper bound of the Hausdorff dimension of the singular set of extremal solutions. Our approach is motivated by Fleming's tangent cone analysis technique for minimal surfaces and Federer's dimension reduction principle in partial regularity theory. A key tool is the monotonicity formula for biharmonic equations. (C) 2014 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem |
Título según SCOPUS: | A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem |
Título de la Revista: | ADVANCES IN MATHEMATICS |
Volumen: | 258 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2014 |
Página de inicio: | 240 |
Página final: | 285 |
Idioma: | English |
DOI: |
10.1016/j.aim.2014.02.034 |
Notas: | ISI, SCOPUS |