STIT tessellations are Bernoulli and standard
Abstract
Let (Y-t : t > 0) be a STIT tessellation process and a > 1. We prove that the random sequence (a(n) Y-a(n) : n is an element of Z) is a non-anticipating factor of a Bernoulli shift. We deduce that the continuous time process (a(t)Y(a)(t) : t is an element of R) is a Bernoulli flow. We use the techniques and results in Martinez and Nagel [Ergodic description of STIT tessellations. Stochastics 84(1) (2012), 113-134]. We also show that the filtration associated to the nonanticipating factor is standard in Vershik's sense.
Más información
Título según WOS: | STIT tessellations are Bernoulli and standard |
Título según SCOPUS: | STIT tessellations are Bernoulli and standard |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 34 |
Número: | 3 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2014 |
Página de inicio: | 876 |
Página final: | 892 |
Idioma: | English |
DOI: |
10.1017/etds.2012.155 |
Notas: | ISI, SCOPUS |