STIT tessellations are Bernoulli and standard

Martínez, S.

Abstract

Let (Y-t : t > 0) be a STIT tessellation process and a > 1. We prove that the random sequence (a(n) Y-a(n) : n is an element of Z) is a non-anticipating factor of a Bernoulli shift. We deduce that the continuous time process (a(t)Y(a)(t) : t is an element of R) is a Bernoulli flow. We use the techniques and results in Martinez and Nagel [Ergodic description of STIT tessellations. Stochastics 84(1) (2012), 113-134]. We also show that the filtration associated to the nonanticipating factor is standard in Vershik's sense.

Más información

Título según WOS: STIT tessellations are Bernoulli and standard
Título según SCOPUS: STIT tessellations are Bernoulli and standard
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 34
Número: 3
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2014
Página de inicio: 876
Página final: 892
Idioma: English
DOI:

10.1017/etds.2012.155

Notas: ISI, SCOPUS