Hybrid indexes for repetitive datasets

Ferrada, H; Gagie, T; Hirvola, T; Puglisi, SJ

Abstract

Advances in DNA sequencing mean that databases of thousands of human genomes will soon be commonplace. In this paper, we introduce a simple technique for reducing the size of conventional indexes on such highly repetitive texts. Given upper bounds on pattern lengths and edit distances, we preprocess the text with the lossless data compression algorithm LZ77 to obtain a filtered text, for which we store a conventional index. Later, given a query, we find all matches in the filtered text, then use their positions and the structure of the LZ77 parse to find all matches in the original text. Our experiments show that this also significantly reduces query times.

Más información

Título según WOS: Hybrid indexes for repetitive datasets
Título según SCOPUS: Hybrid indexes for repetitive datasets
Título de la Revista: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
Volumen: 372
Número: 2016
Editorial: ROYAL SOC
Fecha de publicación: 2014
Idioma: English
DOI:

10.1098/rsta.2013.0137

Notas: ISI, SCOPUS