Hybrid indexes for repetitive datasets
Abstract
Advances in DNA sequencing mean that databases of thousands of human genomes will soon be commonplace. In this paper, we introduce a simple technique for reducing the size of conventional indexes on such highly repetitive texts. Given upper bounds on pattern lengths and edit distances, we preprocess the text with the lossless data compression algorithm LZ77 to obtain a filtered text, for which we store a conventional index. Later, given a query, we find all matches in the filtered text, then use their positions and the structure of the LZ77 parse to find all matches in the original text. Our experiments show that this also significantly reduces query times.
Más información
Título según WOS: | Hybrid indexes for repetitive datasets |
Título según SCOPUS: | Hybrid indexes for repetitive datasets |
Título de la Revista: | PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES |
Volumen: | 372 |
Número: | 2016 |
Editorial: | ROYAL SOC |
Fecha de publicación: | 2014 |
Idioma: | English |
DOI: |
10.1098/rsta.2013.0137 |
Notas: | ISI, SCOPUS |