Uniform existential interpretation of arithmetic in rings of functions of positive characteristic
Abstract
We show that first order integer arithmetic is uniformly positive-existentially interpretable in large classes of (subrings of) function fields of positive characteristic over some languages that contain the language of rings. One of the main intermediate results is a positive existential definition (in these classes), uniform among all characteristics p, of the binary relation or for some integer sa parts per thousand yen0. A natural consequence of our work is that there is no algorithm to decide whether or not a system of polynomial equations over has solutions in all but finitely many polynomial rings . Analogous consequences are deduced for the rational function fields , over languages with a predicate for the valuation ring at zero.
Más información
Título según WOS: | Uniform existential interpretation of arithmetic in rings of functions of positive characteristic |
Título según SCOPUS: | Uniform existential interpretation of arithmetic in rings of functions of positive characteristic |
Título de la Revista: | INVENTIONES MATHEMATICAE |
Volumen: | 196 |
Número: | 2 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2014 |
Página de inicio: | 453 |
Página final: | 484 |
Idioma: | English |
DOI: |
10.1007/s00222-013-0472-1 |
Notas: | ISI, SCOPUS |