The asymptotic behavior of the linear transmission problem in viscoelasticity
Abstract
We consider a transmission problem with localized Kelvin-Voigt viscoelastic damping. Our main result is to show that the corresponding semigroup (SA(t))t0 is not exponentially stable, but the solution of the system decays polynomially to zero as 1/t2 when the initial data are taken over the domain D(A). Moreover, we prove that this rate of decay is optimal. Finally, using a second order scheme that ensures the decay of energy (Newmark- method), we give some numerical examples which demonstrate this polynomial asymptotic behavior.
Más información
| Título según WOS: | The asymptotic behavior of the linear transmission problem in viscoelasticity |
| Título según SCOPUS: | The asymptotic behavior of the linear transmission problem in viscoelasticity |
| Título de la Revista: | MATHEMATISCHE NACHRICHTEN |
| Volumen: | 287 |
| Número: | 5-6 |
| Editorial: | WILEY-V C H VERLAG GMBH |
| Fecha de publicación: | 2014 |
| Página de inicio: | 483 |
| Página final: | 497 |
| Idioma: | English |
| DOI: |
10.1002/mana.201200319 |
| Notas: | ISI, SCOPUS |