EXACT NUMBER OF SOLUTIONS FOR A NEUMANN PROBLEM INVOLVING THE p-LAPLACIAN
Abstract
We study the exact number of solutions of the quasilinear Neumann boundary-value problem (phi(p)(u'(t)))' + g(u(t)) = h(t) in (a, b), u'(a) = u'(b) = 0, where phi(p)(s) = vertical bar s vertical bar(p-2)s denotes the one-dimensional p-Laplacian. Under appropriate hypotheses on g and h, we obtain existence, multiplicity, exactness and non existence results. The existence of solutions is proved using the method of upper and lower solutions.
Más información
Título según WOS: | EXACT NUMBER OF SOLUTIONS FOR A NEUMANN PROBLEM INVOLVING THE p-LAPLACIAN |
Título de la Revista: | ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS |
Editorial: | TEXAS STATE UNIV |
Fecha de publicación: | 2014 |
Idioma: | English |
Notas: | ISI |