Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms
Abstract
In this paper we are interested on the well-posedness of Dirichlet problems associated to integro-differential elliptic operators of order alpha < 1 in a bounded smooth domain Omega. The main difficulty arises because of losses of the boundary condition for sub and supersolutions due to the lower diffusive effect of the elliptic operator compared with the drift term. We consider the notion of viscosity solution with generalized boundary conditions, concluding strong comparison principles in <(Omega)over bar> under rather general assumptions over the drift term. As a consequence, existence and uniqueness of solutions in C((Omega) over bar) is obtained via Perron's method.
Más información
Título según WOS: | Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms |
Título según SCOPUS: | Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms |
Título de la Revista: | COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS |
Volumen: | 39 |
Número: | 8 |
Editorial: | TAYLOR & FRANCIS INC |
Fecha de publicación: | 2014 |
Página de inicio: | 1523 |
Página final: | 1554 |
Idioma: | English |
DOI: |
10.1080/03605302.2014.900567 |
Notas: | ISI, SCOPUS |