Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem

Meddahi S.; Mora, D; Rodriguez, R

Keywords: Eigenvalue problem; Elastoacoustic vibrations; Finite elements; Fluid, structure interaction; Mixed elasticity equations; Sloshing

Abstract

The aim of this paper is to analyze an elastoacoustic vibration problem employing a dual-mixed formulation in the solid domain. The Cauchy stress tensor and the rotation are the primary variables in the elastic structure while the standard pressure formulation is considered in the acoustic fluid. The resulting mixed eigenvalue problem is approximated by a conforming Galerkin scheme based on the lowest order Lagrange and Arnold-Falk-Winther finite element subspaces in the fluid and solid domains, respectively. We show that the scheme provides a correct approximation of the spectrum and prove quasi-optimal error estimates. Finally, we report some numerical experiments. (C) 2014 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem
Título según SCOPUS: Finite element analysis for a pressure-stress formulation of a fluid-structure interaction spectral problem
Título de la Revista: COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volumen: 68
Número: 12
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2014
Página de inicio: 1733
Página final: 1750
Idioma: English
DOI:

10.1016/j.camwa.2014.10.016

Notas: ISI, SCOPUS