Hairy black holes: Stability under odd-parity perturbations and existence of slowly rotating solutions

Anabalón A.; Bicak J.; Saavedra J.

Abstract

We show that, independently of the scalar field potential and of specific asymptotic properties of the spacetime (asymptotically flat, de Sitter or anti-de Sitter), any static, spherically symmetric or planar, black hole solution of the Einstein theory minimally coupled to a real scalar field with a general potential is mode stable under linear odd-parity perturbations. To this end, we generalize the Regge-Wheeler equation for a generic self-interacting scalar field, and show that the potential of the relevant Schrodinger operator can be mapped, by the so-called S-deformation, to a semipositively defined potential. With these results at hand we study the existence of slowly rotating configurations. The frame dragging effect is compared with the corresponding effect in the case of a Kerr black hole.

Más información

Título según WOS: Hairy black holes: Stability under odd-parity perturbations and existence of slowly rotating solutions
Título según SCOPUS: Hairy black holes: Stability under odd-parity perturbations and existence of slowly rotating solutions
Título de la Revista: PHYSICAL REVIEW D
Volumen: 90
Número: 12
Editorial: American Physical Society
Fecha de publicación: 2014
Idioma: English
DOI:

10.1103/PhysRevD.90.124055

Notas: ISI, SCOPUS