Instability of magnetic equilibria in barotropic stars

Mitchell J.P.; Braithwaite J.; Reisenegger, A.; Spruit H.; Valdivia, J. A.; Langer, N

Keywords: white dwarfs, magnetic fields, stars; MHD, stars; Neutron

Abstract

In stably stratified stars, numerical magnetohydrodynamics simulations have shown that arbitrary initial magnetic fields evolve into stable equilibrium configurations, usually containing nearly axisymmetric, linked poloidal and toroidal fields that stabilize each other. In this work, we test the hypothesis that stable stratification is a requirement for the existence of such stable equilibria. For this purpose, we follow numerically the evolution of magnetic fields in barotropic (and thus neutrally stable) stars, starting from two different types of initial conditions, namely random disordered magnetic fields, as well as linked poloidal-toroidal configurations resembling the previously found equilibria. With many trials, we always find a decay of the magnetic field over a few Alfvén times, never a stable equilibrium. This strongly suggests that there are no stable equilibria in barotropic stars, thus clearly invalidating the assumption of barotropic equations of state often imposed on the search of magnetic equilibria. It also supports the hypothesis that, as dissipative processes erode the stable stratification, they might destabilize previously stable magnetic field configurations, leading to their decay.

Más información

Título según SCOPUS: Instability of magnetic equilibria in barotropic stars
Título de la Revista: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volumen: 447
Número: 2
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2014
Página de inicio: 1213
Página final: 1223
Idioma: English
DOI:

10.1093/mnras/stu2514

Notas: SCOPUS