Pattern formation for a reaction diffusion system with constant and cross diffusion
Abstract
In this work, we study a finite volume scheme for a reaction diffusion system with constant and cross diffusionmodeling the spread of an epidemic disease within a host population structured with three subclasses of individuals (SIR-model). The mobility in each class is assumed to be influenced by the gradient of other classes. We establish the existence of a solution to the finite volume scheme and show convergence to a weak solution. The convergence proof is based on deriving a series of a priori estimates and using a general Lp compactness criterion.
Más información
| Título según SCOPUS: | Pattern formation for a reaction diffusion system with constant and cross diffusion |
| Título de la Revista: | SIAM INTERNATIONAL MESHING ROUNDTABLE 2023, SIAM IMR 2023 |
| Volumen: | 103 |
| Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
| Fecha de publicación: | 2015 |
| Página de inicio: | 153 |
| Página final: | 161 |
| Idioma: | English |
| DOI: |
10.1007/978-3-319-10705-9_15 |
| Notas: | SCOPUS |