Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R-3

Chen, W; Guerra, I.

Keywords: Bubble solutions; Mountain pass solution; Multiplicity

Abstract

We consider the following Dirichlet boundary value problem. (0.1){-δu=u5-ε+λuq,u>0in Ωu=0on ∂Ω, where Ω is a smooth bounded domain in R3, 1. <. q<. 3, the parameters λ. >. 0 and ε. >. 0. By Lyapunov-Schmidt reduction method and the Mountain Pass Theorem, we prove that in suitable ranges for the parameters λ and ε, problem (0.1) has at least two solutions. Additionally if 2. ≤. q<. 3, we prove the existence of at least three solutions. Consequently, we prove a non-uniqueness result for a subcritical problem with an increasing nonlinearity.

Más información

Título según WOS: Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R-3
Título según SCOPUS: Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R3
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 424
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2015
Página de inicio: 179
Página final: 200
Idioma: English
DOI:

10.1016/j.jmaa.2014.11.019

Notas: ISI, SCOPUS