Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R-3
Keywords: Bubble solutions; Mountain pass solution; Multiplicity
Abstract
We consider the following Dirichlet boundary value problem. (0.1){-δu=u5-ε+λuq,u>0in Ωu=0on ∂Ω, where Ω is a smooth bounded domain in R3, 1. <. q<. 3, the parameters λ. >. 0 and ε. >. 0. By Lyapunov-Schmidt reduction method and the Mountain Pass Theorem, we prove that in suitable ranges for the parameters λ and ε, problem (0.1) has at least two solutions. Additionally if 2. ≤. q<. 3, we prove the existence of at least three solutions. Consequently, we prove a non-uniqueness result for a subcritical problem with an increasing nonlinearity.
Más información
Título según WOS: | Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R-3 |
Título según SCOPUS: | Multiplicity of solutions to nearly critical elliptic equation in the bounded domain of R3 |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 424 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2015 |
Página de inicio: | 179 |
Página final: | 200 |
Idioma: | English |
DOI: |
10.1016/j.jmaa.2014.11.019 |
Notas: | ISI, SCOPUS |