Sign changes of Fourier coefficients of cusp forms supported on prime power indices

Kohnen, W; Martin Y.

Keywords: fourier coefficients, Sign changes, modular forms

Abstract

Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(Z) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes p the sequence (a(p(jn)))(n >= 0) has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over Q.

Más información

Título según WOS: Sign changes of Fourier coefficients of cusp forms supported on prime power indices
Título según SCOPUS: Sign changes of Fourier coefficients of cusp forms supported on prime power indices
Título de la Revista: INTERNATIONAL JOURNAL OF NUMBER THEORY
Volumen: 10
Número: 8
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2014
Página de inicio: 1921
Página final: 1927
Idioma: English
DOI:

10.1142/S1793042114500626

Notas: ISI, SCOPUS