Sign changes of Fourier coefficients of cusp forms supported on prime power indices
Keywords: fourier coefficients, Sign changes, modular forms
Abstract
Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(Z) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes p the sequence (a(p(jn)))(n >= 0) has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over Q.
Más información
Título según WOS: | Sign changes of Fourier coefficients of cusp forms supported on prime power indices |
Título según SCOPUS: | Sign changes of Fourier coefficients of cusp forms supported on prime power indices |
Título de la Revista: | INTERNATIONAL JOURNAL OF NUMBER THEORY |
Volumen: | 10 |
Número: | 8 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2014 |
Página de inicio: | 1921 |
Página final: | 1927 |
Idioma: | English |
DOI: |
10.1142/S1793042114500626 |
Notas: | ISI, SCOPUS |