Electrochemically Grown Self-Organized Hematite Nanotube Arrays for PhotoelectrochemicalWater Splitting
Abstract
Hematite nanostructures were electrochemically grown by ultrasound-assisted anodization of iron substrates in an ethylene glycol based medium. These hematite nano-architectures can be tuned from a 1-D nanoporous layer to a self-organized nanotube one if the grown is done onto a bare iron foil substrate or onto an electrochemical pretreated one, respectively. Depending upon the pre-treatment conditioning, the self-organized nanotube layer consists of nanotube arrays with a single tube inner diameter of approximately 40-50 nm and wall thickness of 20-30 nm. Their morphological, structural and optoelectronic properties are studied. The photoelectrochemical properties of the resulting hematite nanostructures are studied from the point of view of their application as photoanodes in splitting of water. Through the photocurrent transients for the three nanostructured hematite type electrodes under study, the rate constants k(tr) and k(rec) corresponding to the rate constant of charge transfer and recombination processes have been determined. In all cases, the potential value where k(tr) > k(rec) was attained at more negative values than the reversible potential of water oxidation, indicating a photocatalytic effect. All samples show a maximum IPCE value between 350 and 375 nm, being the samples pretreated at -1.0 V which shows the highest IPCE value: 45% at 375 nm. (C) The Author( s) 2014. Published by ECS. All rights reserved.
Más información
Título según WOS: | Electrochemically Grown Self-Organized Hematite Nanotube Arrays for PhotoelectrochemicalWater Splitting |
Título según SCOPUS: | Electrochemically grown self-organized hematite nanotube arrays for photoelectrochemical water splitting |
Título de la Revista: | JOURNAL OF THE ELECTROCHEMICAL SOCIETY |
Volumen: | 161 |
Número: | 14 |
Editorial: | ELECTROCHEMICAL SOC INC |
Fecha de publicación: | 2014 |
Página de inicio: | H903 |
Página final: | H908 |
Idioma: | English |
DOI: |
10.1149/2.0481414jes |
Notas: | ISI, SCOPUS |