Computable error bounds for nonconforming Fortin-Soulie finite element approximation of the Stokes problem
Abstract
We propose computable a posteriori error estimates for a second-order nonconforming finite element approximation of the Stokes problem. The estimator is completely free of unknown constants and gives a guaranteed numerical upper bound on the error in terms of a lower bound for the inf-sup constant of the underlying continuous problem. The estimator is also shown to provide a lower bound on the error up to a constant and higher-order data oscillation terms. Numerical results are presented illustrating the theory and the performance of the estimator.
Más información
| Título según WOS: | Computable error bounds for nonconforming Fortin-Soulie finite element approximation of the Stokes problem |
| Título según SCOPUS: | Computable error bounds for nonconforming Fortin-Soulie finite element approximation of the Stokes problem |
| Título de la Revista: | IMA JOURNAL OF NUMERICAL ANALYSIS |
| Volumen: | 32 |
| Número: | 2 |
| Editorial: | OXFORD UNIV PRESS |
| Fecha de publicación: | 2012 |
| Página de inicio: | 417 |
| Página final: | 447 |
| Idioma: | English |
| DOI: |
10.1093/imanum/drr006 |
| Notas: | ISI, SCOPUS |