Zero Temperature Limits of Gibbs States for Almost-Additive Potentials
Keywords: thermodynamic formalism, gibbs measures, Ergodic optimisation, Almost-additive sequences
Abstract
This paper is devoted to study ergodic optimisation problems for almost-additive sequences of functions (rather than a fixed potential) defined over countable Markov shifts (that is a non-compact space). Under certain assumptions we prove that any accumulation point of a family of Gibbs equilibrium states is a maximising measure. Applications are given in the study of the joint spectral radius and to multifractal analysis of Lyapunov exponent of non-conformal maps.
Más información
| Título según WOS: | Zero Temperature Limits of Gibbs States for Almost-Additive Potentials |
| Título según SCOPUS: | Zero Temperature Limits of Gibbs States for Almost-Additive Potentials |
| Título de la Revista: | JOURNAL OF STATISTICAL PHYSICS |
| Volumen: | 155 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2014 |
| Página de inicio: | 23 |
| Página final: | 46 |
| Idioma: | English |
| DOI: |
10.1007/s10955-014-0943-9 |
| Notas: | ISI, SCOPUS |