Invariant measures and orbit equivalence for generalized Toeplitz subshifts
Abstract
We show that for every metrizable Choquet simplex K and for every group G which is infinite, countable, amenable and residually finite, there exists a Toeplitz G-subshift whose set of shift-invariant probability measures is affinely homeomorphic to K. Furthermore, we get that for every integer d > 1 and every Toeplitz flow (X, T), there exists a Toeplitz Z(d) - subshift which is topologically orbit equivalent to (X, T).
Más información
| Título según WOS: | Invariant measures and orbit equivalence for generalized Toeplitz subshifts |
| Título según SCOPUS: | Theti Invariant measures and orbit equivalence for generalized Toeplitz subshifts |
| Título de la Revista: | GROUPS GEOMETRY AND DYNAMICS |
| Volumen: | 8 |
| Número: | 4 |
| Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
| Fecha de publicación: | 2014 |
| Página de inicio: | 1007 |
| Página final: | 1045 |
| Idioma: | English |
| DOI: |
10.4171/GGD/255 |
| Notas: | ISI, SCOPUS |