Local and global properties of solutions of quasilinear Hamilton-Jacobi equations
Keywords: a priori estimates, singularities, Bessel capacities, Convexity radius
Abstract
We study some properties of the solutions of (E) -Delta(p)u + vertical bar del u vertical bar(q) = 0 in a domain Omega subset of R-N, mostly when p >= q > p - 1. We give a universal a priori estimate of the gradient of the solutions with respect to the distance to the boundary. We give a full classification of the isolated singularities of the nonnegative solutions of (E), a partial classification of isolated singularities of the negative solutions. We prove a general removability result expressed in terms of some Bessel capacity of the removable set. We extend our estimates to equations on complete noncompact manifolds satisfying a lower bound estimate on the Ricci curvature, and derive some Liouville type theorems. (C) 2014 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations |
Título según SCOPUS: | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations |
Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
Volumen: | 267 |
Número: | 9 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2014 |
Página de inicio: | 3294 |
Página final: | 3331 |
Idioma: | English |
DOI: |
10.1016/j.jfa.2014.07.003 |
Notas: | ISI, SCOPUS |