Local and global properties of solutions of quasilinear Hamilton-Jacobi equations

Bidaut-Veron, MF; García Huidobro M; Véron L.

Keywords: a priori estimates, singularities, Bessel capacities, Convexity radius

Abstract

We study some properties of the solutions of (E) -Delta(p)u + vertical bar del u vertical bar(q) = 0 in a domain Omega subset of R-N, mostly when p >= q > p - 1. We give a universal a priori estimate of the gradient of the solutions with respect to the distance to the boundary. We give a full classification of the isolated singularities of the nonnegative solutions of (E), a partial classification of isolated singularities of the negative solutions. We prove a general removability result expressed in terms of some Bessel capacity of the removable set. We extend our estimates to equations on complete noncompact manifolds satisfying a lower bound estimate on the Ricci curvature, and derive some Liouville type theorems. (C) 2014 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Local and global properties of solutions of quasilinear Hamilton-Jacobi equations
Título según SCOPUS: Local and global properties of solutions of quasilinear Hamilton-Jacobi equations
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 267
Número: 9
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2014
Página de inicio: 3294
Página final: 3331
Idioma: English
DOI:

10.1016/j.jfa.2014.07.003

Notas: ISI, SCOPUS