Holocene sea-surface temperature variability in the Chilean fjord region

Caniupán M.; Lamy, F; Lange, CB; Kaiser J.; Kilian, R; Arz, HW; Leon T.; Mollenhauer, G.; Sandoval, S; De Pol Holz, R.; Pantoja S.; Wellner, J; Tiedemann, R

Keywords: chile, sea-surface temperature, holocene, fjords, alkenones

Abstract

Here we provide three new Holocene (11-0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50-53 degrees S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past similar to 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5 degrees C and a cooling centered at similar to 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at similar to 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords. (C) 2014 University of Washington. Published by Elsevier Inc. All rights reserved.

Más información

Título según WOS: Holocene sea-surface temperature variability in the Chilean fjord region
Título según SCOPUS: Holocene sea-surface temperature variability in the Chilean fjord region
Título de la Revista: QUATERNARY RESEARCH
Volumen: 82
Número: 2
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2014
Página de inicio: 342
Página final: 53
Idioma: English
DOI:

10.1016/j.yqres.2014.07.009

Notas: ISI, SCOPUS