Fractional decay bounds for nonlocal zero order heat equations

Chasseigne, E.; Felmer P.; Rossi JD; Topp, E

Abstract

In this paper, we obtain bounds for the decay rate for solutions to the nonlocal problem partial derivative tu(t,x) = integral(Rn) J(x,y)[u(t,y) - u(t,x)]dy. Here we deal with hounded keniels J but with polynomial tails, that, is, we assume a lower bound of the form J (x,y) >= c(1)-x - y-(-(n+2 sigma)), for -x - y- > c(2). Our estimates takes the form --u(t)--(Lq(Rn)) <= Ct(-(n/2 sigma)(1-1/q)) for t large.

Más información

Título según WOS: Fractional decay bounds for nonlocal zero order heat equations
Título de la Revista: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Volumen: 46
Editorial: Wiley
Fecha de publicación: 2014
Página de inicio: 943
Página final: 952
Idioma: English
DOI:

10.1112/blms/bdu042

Notas: ISI