Fractional decay bounds for nonlocal zero order heat equations
Abstract
In this paper, we obtain bounds for the decay rate for solutions to the nonlocal problem partial derivative tu(t,x) = integral(Rn) J(x,y)[u(t,y) - u(t,x)]dy. Here we deal with hounded keniels J but with polynomial tails, that, is, we assume a lower bound of the form J (x,y) >= c(1)-x - y-(-(n+2 sigma)), for -x - y- > c(2). Our estimates takes the form --u(t)--(Lq(Rn)) <= Ct(-(n/2 sigma)(1-1/q)) for t large.
Más información
Título según WOS: | Fractional decay bounds for nonlocal zero order heat equations |
Título de la Revista: | BULLETIN OF THE LONDON MATHEMATICAL SOCIETY |
Volumen: | 46 |
Editorial: | Wiley |
Fecha de publicación: | 2014 |
Página de inicio: | 943 |
Página final: | 952 |
Idioma: | English |
DOI: |
10.1112/blms/bdu042 |
Notas: | ISI |