Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions A review and a perspective

cartes C.; Descalzi O.; Brand, HR

Abstract

We review the work on exploding dissipative solitons in one and two spatial dimensions. Features covered include: the transition from modulated to exploding dissipative solitons, the analogue of the Ruelle-Takens scenario for dissipative solitons, inducing exploding dissipative solitons by noise, two classes of exploding dissipative solitons in two spatial dimensions, diffusing asymmetric exploding dissipative solitons as a model for a two-dimensional extended chaotic system. As a perspective we outline the interaction of exploding dissipative solitons with quasi one-dimensional dissipative solitons, breathing quasi one-dimensional solutions and their possible connection with experimental results on convection, and the occurence of exploding dissipative solitons in reaction-diffusion systems. It is a great pleasure to dedicate this work to our long-time friend Hans (Prof. Dr. Hans Jurgen Herrmann) on the occasion of his 60th birthday.

Más información

Título según WOS: Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions A review and a perspective
Título según SCOPUS: Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions: A review and a perspective
Título de la Revista: EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
Volumen: 223
Número: 11
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2014
Página de inicio: 2145
Página final: 2159
Idioma: English
DOI:

10.1140/epjst/e2014-02255-2

Notas: ISI, SCOPUS