Variational Segmentation of Vector-Valued Images With Gradient Vector Flow
Keywords: deformable models, dynamic PET, gradient vector flow, structure tensor
Abstract
In this paper, we extend the gradient vector flow field for robust variational segmentation of vector-valued images. Rather than using scalar edge information, we define a vectorial edge map derived from a weighted local structure tensor of the image that enables the diffusion of the gradient vectors in accurate directions through the 4D gradient vector flow equation. To reduce the contribution of noise in the structure tensor, image channels are weighted according to a blind estimator of contrast. The method is applied to biological volume delineation in dynamic PET imaging, and validated on realistic Monte Carlo simulations of numerical phantoms as well as on real images.
Más información
Título según WOS: | Variational Segmentation of Vector-Valued Images With Gradient Vector Flow |
Título según SCOPUS: | Variational segmentation of vector-valued images with gradient vector flow |
Título de la Revista: | IEEE TRANSACTIONS ON IMAGE PROCESSING |
Volumen: | 23 |
Número: | 11 |
Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Fecha de publicación: | 2014 |
Página de inicio: | 4773 |
Página final: | 4785 |
Idioma: | English |
DOI: |
10.1109/TIP.2014.2353854 |
Notas: | ISI, SCOPUS |