Invariant Parallels, Invariant Meridians and Limit Cycles of Polynomial Vector Fields on Some 2-Dimensional Algebraic Tori in R-3
Keywords: limit cycle, periodic orbit, Polynomial vector field, Invariant parallel, Invariant meridian, 2-Dimensional torus
Abstract
We consider the polynomial vector fields of arbitrary degree in R-3 having the 2-dimensional algebraic torus T-2 (l, m, n) = {(x, y, z) is an element of R-3 : (x(2l) + y(2m) - r(2))(2) + z(2n) - 1 = 0}, where l, m, and n positive integers, and r is an element of (1, infinity), invariant by their flow. We study the possible configurations of invariant meridians and parallels that these vector fields can exhibit on T-2(l, m, n). Furthermore, we analyze when these invariant meridians or parallels are limit cycles.
Más información
Título según WOS: | Invariant Parallels, Invariant Meridians and Limit Cycles of Polynomial Vector Fields on Some 2-Dimensional Algebraic Tori in R-3 |
Título de la Revista: | JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS |
Volumen: | 25 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2013 |
Página de inicio: | 777 |
Página final: | 793 |
Idioma: | English |
DOI: |
10.1007/s10884-013-9315-4 |
Notas: | ISI |