Exploring characterizations of learning object repositories using data mining techniques

Segura A.; Vidal C.; Menendez V.; Zapata A.; Prieto M.

Keywords: Association rules Clustering Data mining Learning object repositories Learning objects Metadata

Abstract

Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search. © 2009 Springer-Verlag Berlin Heidelberg.

Más información

Título según WOS: Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques
Título según SCOPUS: Exploring characterizations of learning object repositories using data mining techniques
Título de la Revista: Communications in Computer and Information Science
Volumen: 46
Editorial: Springer Nature
Fecha de publicación: 2009
Página de inicio: 215
Página final: 225
Idioma: eng
DOI:

10.1007/978-3-642-04590-5_20

Notas: ISI, SCOPUS