Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper polluted soil using Oenothera picensis

Cornejo, Pablo; Meier, Sebastián; García, Susana; Ferrol, Nuria; Durán, Paola; Borie, Fernando; Seguel, Alex

Abstract

The Bradford-reactive soil protein (BRSP) fraction includes glomalin, a glycoprotein produced by arbuscular mycorrhizal (AM) fungi that is able to bind some metals, such as copper (Cu), which could promote the bioremediation of Cu-polluted soils. This study aimed to analyze the Cu-binding capacity of BRSP in Oenothera picensis that was inoculated or not inoculated with AM fungi. O. picensis plants were established in a Cu contaminated sterilized soil and treated with the following: i) uninoculated (-M); ii) inoculated with native AM fungal propagules (+M); or iii) inoculated with a Claroideoglomus claroideum (CC) strain isolated from non-contaminated soil. In each case, five Cu levels were applied to the soil (basal level 497.3 mg Cu kg-1): 0 (T1); 75 (T2); 150 (T3); 225 (T4); and 300 mg Cu kg-1 (T5). A high BRSP accumulation in AM inoculated treatments, especially with CC, was observed. A higher Cu-bound-to-BRSP content was found with increasing Cu concentrations, representing up to 20-22% of the total Cu in the soil. Moreover, a higher root Cu concentration in +M was observed. These results suggest a high Cu binding capacity by BRSP, which is a relevant aspect to consider in the design of bioremediation programs together with the selection of endemic metallophytes and AM fungal strains, which are able to produce glomalin at high quantities.

Más información

Título de la Revista: Journal of Soil Science and Plant Nutrition
Fecha de publicación: 2016
Notas: ISI