Energy transfer in O collisions with He isotopes and Helium escape from Mars

Bovino, S.; Zhang, P.; Gianturco, F. A.; Dalgarno, A.; Kharchenko, V.

Abstract

Accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas on Mars, are reported. Anisotropic cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O+He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere. Atmospheric layers mostly responsible for production of the He escape flux are identified. Our results demonstrate that strong angular anisotropy of scattering cross sections increases the collisional ejection of light atoms and is critical in the evaluation of He escape from Mars, Venus and Earth.

Más información

Título de la Revista: GEOPHYSICAL RESEARCH LETTERS
Volumen: 38
Número: 2
Editorial: AMER GEOPHYSICAL UNION
Fecha de publicación: 2011
Página de inicio: n/a
Página final: n/a
DOI:

10.1029/2010GL045763

Notas: ISI