Partial orders and minimization of records in a sequence of independent random variables
Abstract
Given independentrandom variables X-1,..., X-n, with continuous distributions F-1,..., F-n, we investigate the order in which these random variables should be arranged so as to minimize the number of upper records. We show that records are stochastically minimized if the sequence F-1,..., F-n decreases with respect to a partial order, closely related to the monotone likelihood ratio property. Also, the expected number of records is shown to be minimal when the distributions are comparable in terms of a one-sided hazard rate ordering. Applications to parametric models are considered.
Más información
| Título de la Revista: | JOURNAL OF APPLIED PROBABILITY |
| Volumen: | 36 |
| Número: | 4 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 1999 |
| Página de inicio: | 965 |
| Página final: | 973 |
| Idioma: | Ingles |
| Financiamiento/Sponsor: | FONDECYT |
| DOI: |
WOS:000085722300002 |
| Notas: | ISI |