Partial orders and minimization of records in a sequence of independent random variables

Gouet, R; San Martin, J

Abstract

Given independentrandom variables X-1,..., X-n, with continuous distributions F-1,..., F-n, we investigate the order in which these random variables should be arranged so as to minimize the number of upper records. We show that records are stochastically minimized if the sequence F-1,..., F-n decreases with respect to a partial order, closely related to the monotone likelihood ratio property. Also, the expected number of records is shown to be minimal when the distributions are comparable in terms of a one-sided hazard rate ordering. Applications to parametric models are considered.

Más información

Título de la Revista: JOURNAL OF APPLIED PROBABILITY
Volumen: 36
Número: 4
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 1999
Página de inicio: 965
Página final: 973
Idioma: Ingles
Financiamiento/Sponsor: FONDECYT
DOI:

WOS:000085722300002

Notas: ISI