Outward currents in Drosophila larval neurons: dunce lacks a maintained outward current component downregulated by cAMP.

Delgado, R; Davis, R; Bono, MR; Latorre, R; Labarca, P

Abstract

Outward current modulation by cAMP was investigated in wild type (wt) and dunce (dnc) Drosophila larval neurons. dnc is deficient in a cAMP phosphodiesterase and has altered memory. Outward current modulation by cAMP was investigated by acute or chronic exposure to cAMP analogs. The analysis included a scrutiny of outward current modulation by cAMP in neurons from the mushroom bodies (mrb). In Drosophila, the mrb are the centers of olfactory acquisition and retention. Based on outward current patterns, neurons were classified into four types. Downmodulation of outward currents induced by acute application of cAMP analogs was reversible and found only in type I and type IV neurons. In the general wt neuron population, approximately half of neurons exhibited cAMP-modulated, 4-aminopyridine (4-AP)-sensitive currents. On the other hand, a significantly larger fraction of mrb neurons in wt (70%) was endowed with cAMP-modulated, 4-AP-sensitive currents. Only 30% of the dnc neurons displayed outward currents modulated by cAMP. The deficit of cAMP-modulated outward currents was most severe in neurons derived from the mrb of dnc individuals. Only 4% of the mrb neurons of dnc were cAMP-modulated. The dnc defect can be induced by chronic exposure of wt neurons to cAMP analogs. These results document for the first time a well defined electrophysiological neuron phenotype in correlation with the dnc defect. Moreover, this study demonstrates that in dnc mutants such a deficiency affects most severely neurons in brain centers of acquisition and retention.

Más información

Título de la Revista: J Neurosci
Volumen: 18
Número: 4
Fecha de publicación: 1998
Página de inicio: 1399
Página final: 1407
Idioma: English
Notas: ISI