Cesaro mean distribution of group automata starting from measures with summable decay
Abstract
Consider a finite Abelian group (G, +), with -G- = p(r), p a prime number, and phi : G(N) --> G(N) the cellular automaton given by (phix)(n) = mux(n) + nux(n+1) for any n is an element of N where mu and nu are integers coprime to p. We prove that if P is a translation invariant probability measure on G(Z) determining a chain with complete connections and summable decay of correlations, then for any <(
Más información
| Título según WOS: | Cesaro mean distribution of group automata starting from measures with summable decay |
| Título según SCOPUS: | Cesàro mean distribution of group automata starting from measures with summable decay |
| Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
| Volumen: | 20 |
| Número: | 6 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2000 |
| Página de inicio: | 1657 |
| Página final: | 1670 |
| Idioma: | English |
| URL: | http://www.journals.cambridge.org/abstract_S0143385700000924 |
| DOI: |
10.1017/S0143385700000924 |
| Notas: | ISI, SCOPUS |