Lattice-based biclustering using Partition Pattern Structures

OSullivan, B; Schaub, T; Codocedo, Victor; Friedrich, G; Napoli, Amedeo

Abstract

In this work we present a novel technique for exhaustive bicluster enumeration using formal concept analysis (FCA). Particularly, we use pattern structures (an extension of FCA dealing with complex data) to mine similar row/column biclusters, a specialization of biclustering when attribute values have coherent variations. We show how bi-clustering can benefit from the FCA framework through its robust theoretical description and efficient algorithms. Finally, we evaluate our bicluster mining approach w.r.t. a standard biclustering technique showing very good results in terms of bicluster quality and performance.

Más información

Título según WOS: ID WOS:000349444700037 Not found in local WOS DB
Título de la Revista: ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE OF THE CATALAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE
Volumen: 263
Editorial: IOS Press
Fecha de publicación: 2014
Página de inicio: 213
Página final: 218
DOI:

10.3233/978-1-61499-419-0-213

Notas: ISI