A finite element thermally coupled flow formulation for phase-change problems
Abstract
A finite element, thermally coupled incompressible flow formulation considering phase-change effects is presented. This formulation accounts for natural convection, temperature-dependent material properties and isothermal and non-isothermal phase-change models. In this context, the full Navier-Stokes equations are solved using a generalized streamline operator (GSO) technique. The highly non-linear phase-change effects are treated with a temperature-based algorithm, which provides stability and convergence of the numerical solution. The Boussinesq approximation is used in order to consider the temperature-dependent density variation. Furthermore, the numerical solution of the coupled problem is approached with a staggered incremental-iterative solution scheme, such that the convergence criteria are written in terms of the residual vectors. Finally, this formulation is used for the solutions of solidification and melting problems validating some numerical results with other existing solutions obtained with different methodologies. Copyright (C) 2000 John Wiley & Sons, Ltd.
Más información
Título según WOS: | A finite element thermally coupled flow formulation for phase-change problems |
Título según SCOPUS: | A finite element thermally coupled flow formulation for phase-change problems |
Título de la Revista: | INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS |
Volumen: | 34 |
Número: | 4 |
Editorial: | Wiley |
Fecha de publicación: | 2000 |
Página de inicio: | 279 |
Página final: | 305 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/1097-0363%2820001030%2934%3A4%3C279%3A%3AAID-FLD58%3E3.3.CO%3B2-L |
DOI: |
10.1002/1097-0363(20001030)34:4<279::AID-FLD58>3.0.CO;2-U |
Notas: | ISI, SCOPUS |