Non-accessible critical points of Cremer polynomials
Abstract
It is shown that a polynomial with a Cremer periodic orbit has a non-accessible critical point in its Julia set provided that the Cremer periodic orbit is approximated by small cycles. Also, this paper contains a new proof of the Douady-Shishikura inequality for the number of non-repelling cycles of a complex polynomial.
Más información
Título según WOS: | Non-accessible critical points of Cremer polynomials |
Título según SCOPUS: | Non-accessible critical points of cremer polynomials |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 20 |
Número: | 5 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2000 |
Página de inicio: | 1391 |
Página final: | 1403 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0143385700000754 |
DOI: |
10.1017/S0143385700000754 |
Notas: | ISI, SCOPUS |