Ground states of semilinear elliptic equations: a geometric approach
Abstract
We consider the problem Deltau + u(p) + u (q)= 0, in R-N 0 < u(X) --> 0 as /x/ --> +infinity, where 1 < p < (N + 2)/(N - 2) < q, We prove that if q is fixed and we let p approach (N + 2)/(N - 2) from below, then this problem has a large number of radial solutions. A similar fact takes place if we fix p > N/(N - 2) and then let q approach (N + 2)/(N - 2), If we fix q and then let p be close enough to NI(N - 2) then no solutions exist. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Más información
Título según WOS: | Ground states of semilinear elliptic equations: a geometric approach |
Título según SCOPUS: | Ground states of semilinear elliptic equations: A geometric approach |
Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Volumen: | 17 |
Número: | 5 |
Editorial: | GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Fecha de publicación: | 2000 |
Página de inicio: | 551 |
Página final: | 581 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0294144900001268 |
DOI: |
10.1016/S0294-1449(00)00126-8 |
Notas: | ISI, SCOPUS |