Ground states of semilinear elliptic equations: a geometric approach
Abstract
We consider the problem Deltau + u(p) + u (q)= 0, in R-N 0 < u(X) --> 0 as /x/ --> +infinity, where 1 < p < (N + 2)/(N - 2) < q, We prove that if q is fixed and we let p approach (N + 2)/(N - 2) from below, then this problem has a large number of radial solutions. A similar fact takes place if we fix p > N/(N - 2) and then let q approach (N + 2)/(N - 2), If we fix q and then let p be close enough to NI(N - 2) then no solutions exist. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Más información
| Título según WOS: | Ground states of semilinear elliptic equations: a geometric approach |
| Título según SCOPUS: | Ground states of semilinear elliptic equations: A geometric approach |
| Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
| Volumen: | 17 |
| Número: | 5 |
| Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
| Fecha de publicación: | 2000 |
| Página de inicio: | 551 |
| Página final: | 581 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0294144900001268 |
| DOI: |
10.1016/S0294-1449(00)00126-8 |
| Notas: | ISI, SCOPUS |