A note on static solutions of a Lorentz invariant equation in dimension 3
Abstract
The aim of this Letter is to prove the existence of a static solution to the Lorentz invariant equation square (2)u+epsilon square (6)u+V'(u)=0 in every class of maps with nonzero topological charge when the singular potential V has some radial symmetry. Here u:R3+1-->R-4, u=u(x,t), x is an element ofR(3), t is an element ofR and square (p)u=partial derivative/partial derivativet [(c(2)/delu/(2)-/u(t)/(2))(p-2) u(t)]-c(2)del [(c(2)/delu/(2)-/u(t)/(2))(p-2)delu].
Más información
| Título según WOS: | A note on static solutions of a Lorentz invariant equation in dimension 3 |
| Título según SCOPUS: | A note on static solutions of a Lorentz invariant equation in dimension 3 |
| Título de la Revista: | LETTERS IN MATHEMATICAL PHYSICS |
| Volumen: | 53 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2000 |
| Página de inicio: | 1 |
| Página final: | 10 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1023/A:1026569410434 |
| DOI: |
10.1023/A:1026569410434 |
| Notas: | ISI, SCOPUS |