On the existence of conditionally invariant probability measures in dynamical systems

Collet, P.; Martínez, S.; Maume-Deschamps, V

Abstract

Let T : X --> X be a measurable map defined on a Polish space X and let Y be a non-trivial subset of X. We give conditions ensuring the existence of conditionally invariant probability measures to non-absorption in Y. For dynamics which are non-singular with respect to some fixed probability measure we supply sufficient conditions for the existence of absolutely continuous conditionally invariant measures. These conditions are satisfied for a wide class of dynamical systems including systems that are Phi-mixing and Gibbs. AMS classification scheme numbers: 37A05, 28D05.

Más información

Título según WOS: On the existence of conditionally invariant probability measures in dynamical systems
Título según SCOPUS: On the existence of conditionally invariant probability measures in dynamical systems
Título de la Revista: NONLINEARITY
Volumen: 13
Número: 4
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2000
Página de inicio: 1263
Página final: 1274
Idioma: English
URL: http://stacks.iop.org/0951-7715/13/i=4/a=315?key=crossref.fff2e8d93e6a1462c4770708b5294d7d
DOI:

10.1088/0951-7715/13/4/315

Notas: ISI, SCOPUS