On the existence of conditionally invariant probability measures in dynamical systems
Abstract
Let T : X --> X be a measurable map defined on a Polish space X and let Y be a non-trivial subset of X. We give conditions ensuring the existence of conditionally invariant probability measures to non-absorption in Y. For dynamics which are non-singular with respect to some fixed probability measure we supply sufficient conditions for the existence of absolutely continuous conditionally invariant measures. These conditions are satisfied for a wide class of dynamical systems including systems that are Phi-mixing and Gibbs. AMS classification scheme numbers: 37A05, 28D05.
Más información
Título según WOS: | On the existence of conditionally invariant probability measures in dynamical systems |
Título según SCOPUS: | On the existence of conditionally invariant probability measures in dynamical systems |
Título de la Revista: | NONLINEARITY |
Volumen: | 13 |
Número: | 4 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2000 |
Página de inicio: | 1263 |
Página final: | 1274 |
Idioma: | English |
URL: | http://stacks.iop.org/0951-7715/13/i=4/a=315?key=crossref.fff2e8d93e6a1462c4770708b5294d7d |
DOI: |
10.1088/0951-7715/13/4/315 |
Notas: | ISI, SCOPUS |